Operator-valued tensors on manifolds

Document Type: Research Paper


1 Faculty of Mathematics & Computer Science‎, ‎Amirkabir University of Technology‎, ‎Tehran‎, ‎Iran.

2 Faculty of Mathematics & Computer Science‎, ‎Amirkabir University of Technology‎, ‎Tehran‎, ‎Iran.


‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ \mathbb{R} $ by self-adjoint elements of a commutative $ C^\star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian metrics to operator valued metrics‎. ‎Then‎, ‎in this new geometry‎, ‎some essential concepts of Riemannian geometry such as curvature tensor‎, ‎Levi-Civita connection‎, ‎Hodge star operator‎, ‎exterior derivative‎, ‎divergence,..‎. ‎will be considered.


Main Subjects

I. G. Avramidi, Matrix general relativity: a new look at old problems, Classical Quantum Gravity 21 (2004), no. 1, 103--120.

I. G. Avramidi, Gauged gravity via spectral asymptotics of non-Laplace type operators, J. High Energy Phys. 7 (2004), no. 7, 30 pages.

J. Cuntz, A survey of some aspects of noncommutative geometry, Jahresber. Dtsch. Math.-Ver. 95 (1993), no. 2, 60--84.

I. Chavel, Riemannian Geometry, A Modern Introduction, Second edition. Cambridge Studies in Advanced Mathematics, 98, Cambridge University Press, Cambridge, 2006.

J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.

M. Frank, Geometrical aspects of Hilbert C-modules, Positivity 3 (1999), no. 3, 215--243.

A. Frolicher and A. Nijenhuis, Theory of vector-valued differential forms, I, Derivations of the graded ring of differential forms, Nederl. Akad. Wetensch. Proc. Ser. A. 59, Indag. Math. 18 (1956) 338--359.

E. Kaniuth, A Course in Commutative Banach Algebras, New York, Springer, New York, 2009.

I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953) 839--858.

E. C. Lance, Hilbert C-Modules: A toolkit for operator algebraists, Cambridge University Press, Cambridge, 1995.

N. P. Landsman, Mathematical Topics between Classical Quantum Mechanics, Springer-Verlag, New York, 1998.

G. J. Murphy, C-Algebras and Operator Theory, Academic Press, Inc., Boston, 1990.

B. O'Neill, Semi-Riemannian Geometry with Applications to General Relativity, Pure and Applied Mathematics, 1983.

W. L. Paschke, Inner product modules over B-algebras, Trans. Amer. Math. Soc. 182(1973) 443--468.

W. A. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981.

M. A. Rieffel, Induced representations of C_-algebras, Advances in Math. 13 (1974) 176--257.

W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.

S. Sternberg, Semi-Riemann Geometry and General Relativity, 2003, http://www.math.harvard.edu/-shlomo/docs/semi_riemannian_geometry.pdf.

Volume 42, Issue 5
September and October 2016
Pages 1259-1277
  • Receive Date: 23 November 2014
  • Revise Date: 15 August 2015
  • Accept Date: 15 August 2015